Optimization When You Don't Know the Future

Roie Levin

Introduction

My Research

l research algorithms for optimization in the face of uncertainty.

ShortestPath

Knapsack

ShortestPath

Computationally Easy

Knapsack

ShortestPath

Computationally Easy

Knapsack

NP-hard

ShortestPath

Computationally Easy

Approximate Knapsack

Knapsack

NP-hard

ShortestPath

Computationally Easy

Beautiful theory of Approximation Algorithms!

Approximate Knapsack

Knapsack

NP-hard

FindMax

FindMax

FindMax

FindMax

Online FindMax

4

FindMax

Online FindMax

4 1

FindMax

Online FindMax

4 1 10

FindMax

Online FindMax

4 1 10 -2

FindMax

Online FindMax

4 1 10 -2 22

FindMax

FindMax

FindMax

Online FindMax

4

FindMax

Online FindMax

4 1

FindMax

Online FindMax

4 1 10

FindMax

FindMax

FindMax

FindMax

FindMax

FindMax

Full Information

FindMax

Full Information

Information theoretically hard

FindMax

Full Information

Random Order FindMax

Online FindMax

Information theoretically hard

FindMax

Full Information

Random Order FindMax

Online FindMax

Information theoretically hard

FindMax

Full Information

Random Order FindMax

Online FindMax

Information theoretically hard

FindMax

Full Information

Random Order FindMax

Online FindMax

Information theoretically hard

FindMax

Full Information

Random Order FindMax

Online FindMax

Information theoretically hard

FindMax

Full Information

Online FindMax

Information theoretically hard

Uncertain

FindMax

FindMax

FindMax

Full Information

Uncertain

Full Information

Uncertain

Beautiful theory of Decision Making Under Uncertainty!

Computational Difficulty

Computational Difficulty

Computational Difficulty

10

-2

22

Computational Difficulty

10

-2

22

Computational Difficulty

10

Q: What are the fundamental tradeoffs between computational resources and information?

Computational Difficulty

10

-2

Q: What are the fundamental tradeoffs between computational resources and information?

> My focus: approximation algorithms \cap decision making under uncertainty.

Why should we care?

Why should we care?

1. Natural applications to resource allocation.

Why should we care?

1. Natural applications to resource allocation.

Why should we care?

1. Natural applications to resource allocation.

Why should we care?

1. Natural applications to resource allocation.

2. Sandbox for fundamental algorithmic ideas.

Why should we care?

1. Natural applications to resource allocation.

2. Sandbox for fundamental algorithmic ideas.

min $c^{\mathsf{T}}x$ $Ax \geq 1$ $x \in \mathbb{Z}_{\geq 0}^n$

Why should we care?

1. Natural applications to resource allocation.

2. Sandbox for fundamental algorithmic ideas.

min $c^{\mathsf{T}}x$ $Ax \ge 1$ $x \in \mathbb{Z}_{>0}^n$

Special case of Integer Programming where A is 0/1.

Why should we care?

1. Natural applications to resource allocation.

2. Sandbox for fundamental algorithmic ideas.

Special case of Integer Programming where A is 0/1.

Version 0 of EVERY discrete optimization problem!

Why should we care?

1. Natural applications to resource allocation.

2. Sandbox for fundamental algorithmic ideas.

Special case of Integer Programming where A is 0/1.

Version 0 of EVERY discrete optimization problem!

3. Fast algos get good approximation: $O(\log n)$ [Johnson 74], [Lovasz 75], [Chvatal 79]

What if we don't know user demand a-priori?

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

Expensive to open satellites! Model decisions as irrevocable.

<u>Q</u>: Can we get good approximation, efficiently, despite not knowing the future?

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

Expensive to open satellites! Model decisions as irrevocable.

<u>Q</u>: Can we get good approximation, efficiently, despite not knowing the future?

<u>A:</u> Yes! Approximation: $O(\log^2 n)$ [Alon Awerbuch Azar Buchbinder Naor 03] [Buchbinder Naor 09], this is optimal for polynomial time algorithms.

No take-backs

No take-backs

No take-backs

No take-backs

No take-backs

Dynamic

Streaming

No take-backs

No take-backs

No take-backs

No take-backs

No take-backs

No take-backs

Dynamic

Streaming

No take-backs

Dynamic

No take-backs

Dynamic

No take-backs

Dynamic

No take-backs

Dynamic

No take-backs

Dynamic

No take-backs

Dynamic

No take-backs

Dynamic

No take-backs

Dynamic

No take-backs

Dynamic

No take-backs

Dynamic

No take-backs

Dynamic

No take-backs

Dynamic

No take-backs

Dynamic

No take-backs

Dynamic

No take-backs

Dynamic

Low movement

Low memory

No take-backs

Dynamic

Low movement

Low memory

No take-backs

Dynamic

Low movement

Low memory

Online

No take-backs

Dynamic

Low movement

Low memory

Online

No take-backs

Dynamic

Low movement

Low memory

My Work

Dynamic

My Work

Competitive Algorithms for Block-Aware Caching [Coester, Naor, L., Talmon, SPAA 22]

Chasing Positive Bodies [Bhattacharya, Buchbinder, ., Saranurak, In Submission]

Fully-Dynamic Submodular Cover with **Bounded Recourse** [Gupta, L., FOCS 20]

Dynamic

Robust Subspace Approximation in a Stream [L., Sevekari, Woodruff, NeurIPS 18]

Streaming Submodular Matching Meets the **Primal Dual Method** [L., Wajc, SODA 21]

[Gupta, Kehne, L., FOCS 21]

My Work

Competitive Algorithms for Block-Aware Caching [Coester, Naor, L., Talmon, SPAA 22]

Chasing Positive Bodies [Bhattacharya, Buchbinder, "Saranurak, In Submission]

Fully-Dynamic Submodular Cover with **Bounded Recourse** [Gupta, L., FOCS 20]

Dynamic

Online

The Online Submodular **Cover Problem** [Gupta, L., SODA 20]

> Set Covering with Our **Eyes Wide Shut** [Gupta, Kehne, L., In Submission]

Random Order Set Cover is as Easy as Offline [Gupta, Kehne, L., FOCS 21]

> **Robust Subspace** Approximation in a Stream [L., Sevekari, Woodruff, NeurIPS 18]

Streaming Submodular **Matching Meets the Primal Dual Method** [L., Wajc, SODA 21]

Finding Skewed Subcubes Under a Distribution [Gopalan, L., Wieder, ITCS 20]

FigureSeer: Parsing Result-**Figures in Research Papers** [Siegel, Horvitz, L., Divvala, Farhadi, ECCV 16]

Beyond Sentential Semantic Parsing: Tackling the Math SAT with a Cascade of Tree Transducers [Hopkins, Petrscu-Prahova, L., Le Bras, Herrasti, Joshi, EMNLP 17]

... and others in AI, ML, Fairness

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

$f(\forall) \geq f(\forall), (\mathbf{v})$

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

$f(\mathbf{\nabla}) \ge f(\mathbf{\nabla}), \mathbf{\Theta})$

Theme I — Submodular Optimization

Beyond Set Cover

Q: What general classes of optimization problems can we solve online?

Beyond Set Cover

Q: What general classes of optimization problems can we solve online?

•Universe of choices: $\mathcal{S} = \{s_1, s_2, \dots, s_n\}$

•Universe of choices: $S = \{s_1, s_2, ..., s_n\}$

•Solution:

 $S \subseteq S$

- •Universe of choices: $\mathcal{S} = \{s_1, s_2, \dots, s_n\}$ $S \subseteq S$ •Solution: c(S)•Cost:

- •Universe of choices: $\mathcal{S} = \{s_1, s_2, \dots, s_n\}$ $S \subseteq S$ •Solution:
- $\mathcal{C}(S)$ •Cost:
- •Coverage "Quality": f(S)

•Universe of choices: $\mathcal{S} = \{s_1, s_2, \dots, s_n\}$ $S \subseteq S$ •Solution: c(S)•Cost: •Coverage "Quality": f(S)

Want min cost solution with max coverage!

•Universe of choices: $\mathcal{S} = \{s_1, s_2, \dots, s_n\}$ $S \subseteq S$ •Solution: c(S)•Cost: •Coverage "Quality": f(S)

Want **min cost** solution with **max coverage**!

•Universe of choices: $\mathcal{S} = \{s_1, s_2, \dots, s_n\}$ $S \subseteq \mathcal{S}$ •Solution: c(S)•Cost: •Coverage "Quality": f(S)

Want min cost solution with max coverage!

 $f: 2^{\mathscr{N}} \to \mathbb{R}$ is monotone, nonnegative and <u>submodular</u>.

•Universe of choices: $\mathcal{S} = \{s_1, s_2, \dots, s_n\}$ $S \subseteq \mathcal{S}$ •Solution: c(S)•Cost: •Coverage "Quality": f(S)

Want min cost solution with max coverage!

 $f: 2^{\mathscr{N}} \to \mathbb{R}$ is monotone, nonnegative and <u>submodular</u>.

a.k.a. Submodular Cover [Wolsey 82]

•Universe of choices: $\mathcal{S} = \{s_1, s_2, \dots, s_n\}$ $S \subseteq \mathcal{S}$ •Solution: c(S)•Cost: •Coverage "Quality": f(S)

Want min cost solution with max coverage!

 $f: 2^{\mathscr{N}} \to \mathbb{R}$ is monotone, nonnegative and <u>submodular</u>.

a.k.a. Submodular Cover [Wolsey 82]

We will port this online!

Submodularity

<u>Definition</u>: f is submodular if, $\forall A \subseteq B, x \notin B$,

<u>Definition</u>: f is submodular if, $\forall A \subseteq B, x \notin B$, $f(A + x) - f(A) \ge f(B + x) - f(B)$

<u>Definition</u>: f is submodular if, $\forall A \subseteq B, x \notin B$, $f(A + x) - f(A) \ge f(B + x) - f(B)$ i.e. $f(x \mid A) \ge f(x \mid B)$

<u>Definition</u>: f is submodular if, $\forall A \subseteq B, x \notin B$, $f(A + x) - f(A) \ge f(B + x) - f(B)$ i.e. $f(x \mid A) \ge f(x \mid B)$

1. Highly expressive! Examples of Submodular Cover:

1. Highly expressive! Examples of Submodular Cover:

Robot Exploration

1. Highly expressive! Examples of Submodular Cover:

Robot Exploration

Influence Maximization

1. Highly expressive! Examples of Submodular Cover:

Robot Exploration

Influence Maximization

Feature Selection

1. Highly expressive! Examples of Submodular Cover:

Robot Exploration

Influence Maximization

Feature Selection

Document Summarization

1. Highly expressive! Examples of Submodular Cover:

Robot Exploration

Influence Maximization

Feature Selection

Document Summarization

Resource allocation

Popular to reduce to Submodular Cover! [Goyal+ 13][Loukides Gwadera 16][Zheng+ 17][Andreev+ 09][Lee+ 13] [Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Kortsarz Nutov 15][Jorgensen+ 17][Chen+ 18][Beinhofer+ 13][Tzoumas+ 16][Tong+ 17][Liu+ 16][Mafuta] Walingo 16][Yang+ 15][Rahimian Preciado 15][Izumi+ 10][Wu+ 15], [Shin+ 23], [Gong+ 23], [Li+ 23], [Coester, Naor, L., Talmon 22] etc...

Popular to reduce to Submodular Cover! [Goyal+ 13][Loukides Gwadera 16][Zheng+ 17][Andreev+ 09][Lee+ 13] 17][Chen+ 18][Beinhofer+ 13][Tzoumas+ 16][Tong+ 17][Liu+ 16][Mafuta] [Gong+ 23], [Li+ 23], [Coester, Naor, L., Talmon 22] etc...

Porting submod cover to uncertain settings automatically ports all applications!

- [Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Kortsarz Nutov 15][Jorgensen+ Walingo 16][Yang+ 15][Rahimian Preciado 15][Izumi+ 10][Wu+ 15], [Shin+ 23],

Popular to reduce to Submodular Cover! [Goyal+ 13][Loukides Gwadera 16][Zheng+ 17][Andreev+ 09][Lee+ 13] 17][Chen+ 18][Beinhofer+ 13][Tzoumas+ 16][Tong+ 17][Liu+ 16][Mafuta] [Gong+ 23], [Li+ 23], [Coester, Naor, L., Talmon 22] etc...

Porting submod cover to uncertain settings automatically ports all applications!

2. Fast algos get good approximation: $O(\log n)$ [Wolsey 82]

- [Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Kortsarz Nutov 15][Jorgensen+ Walingo 16][Yang+ 15][Rahimian Preciado 15][Izumi+ 10][Wu+ 15], [Shin+ 23],

Why care about Submodular Cover?

Popular to reduce to Submodular Cover! [Goyal+ 13][Loukides Gwadera 16][Zheng+ 17][Andreev+ 09][Lee+ 13] 17][Chen+ 18][Beinhofer+ 13][Tzoumas+ 16][Tong+ 17][Liu+ 16][Mafuta] [Gong+ 23], [Li+ 23], [Coester, Naor, L., Talmon 22] etc...

Porting submod cover to uncertain settings automatically ports all applications!

2. Fast algos get good approximation: $O(\log n)$ [Wolsey 82]

- [Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Kortsarz Nutov 15][Jorgensen+ Walingo 16][Yang+ 15][Rahimian Preciado 15][Izumi+ 10][Wu+ 15], [Shin+ 23],

 - <u>Punchline: Sweet spot between generality and tractability!</u>

- **>** 1

- **>** 1

Online Submodular Cover

Theorem [Gupta L. SODA 20]: Polynomial time algo for **Online Submod Cover with** approximation $O(\log^2 n)$.

On ine Submodular Cover

Theorem [Gupta L. SODA 20]: Polynomial time algo for **Online Submod Cover with** approximation $O(\log^2 n)$.

Optimal!

On ine Submodular Cover

Theorem [Gupta L. SODA 20]: Polynomial time algo for **Online** Submod Cover with approximation $O(\log^2 n)$.

Optimal!

Technical Ingredient: RoundOrSeparate for LP relaxation of Submodular Cover & generalization of Mutual Information!

Online Submodular Cover

Online Set Cover $O(\log^2 n)$

Submodular Cover $O(\log n)$

Set Cove $O(\log n)$

Online Set Cover $O(\log^2 n)$

Online Submodular Cover $O(\log^2 n)$ [GL.20]

> Submodular Cover $O(\log n)$

Set Cove $O(\log n)$

Online Set Cover $O(\log^2 n)$

Best of both worlds: modeling power of Submodular Cover + Online.

Online Submodular Cover $O(\log^2 n)$ [GL.20]

> Submodular Cover $O(\log n)$

Set Cove $O(\log n)$

Cache of size k

Cache of size k

Cache of size k

Cache of size k

Cache of size k

Cache of size k

Cache of size k

Cache of size k

Cache of size k

Cache of size k

Cache of size k

Cache of size k

Cache of size k

Cache of size k

Cache of size k

Goal is to minimize number of **blocks** fetched/evicted!

Cache of size k

Goal is to minimize number of blocks fetched/evicted!

[Beckmann Gibbons **McGuffey SPAA 21]**

Cache of size k

Goal is to minimize number of blocks fetched/evicted!

[Beckmann Gibbons McGuffey SPAA 21]

Cache of size k

Goal is to minimize number of **blocks** fetched/evicted!

[Beckmann Gibbons McGuffey SPAA 21]

Cache of size k

Goal is to minimize number of blocks fetched/evicted!

[Beckmann Gibbons McGuffey SPAA 21]

Cache of size k

Goal is to minimize number of blocks fetched/evicted!

[Beckmann Gibbons McGuffey SPAA 21]

Cache of size k

Goal is to minimize number of blocks fetched/evicted!

[Beckmann Gibbons McGuffey **SPAA 21**]

Cache of size k

Goal is to minimize number of blocks fetched/evicted!

[Beckmann Gibbons McGuffey SPAA 21]

Cache of size k

Goal is to minimize number of blocks fetched/evicted!

[Beckmann Gibbons McGuffey SPAA 21]

Cache of size k

Goal is to minimize number of blocks fetched/evicted!

[Beckmann Gibbons McGuffey **SPAA 21**]

Cache of size k

Goal is to minimize number of blocks fetched/evicted!

[Beckmann Gibbons McGuffey **SPAA 21**]

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

n total pages, divided into blocks

We give near-optimal algos using [GL. 20]!

Cache of size k

Goal is to minimize number of blocks fetched/evicted!

[Beckmann Gibbons **McGuffey SPAA 21**]

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

n total pages, divided into blocks

We give near-optimal algos using [GL. 20]!

Reduction to Online submodular cover!

Take Away

<u>Q</u>: What general classes of optimization problems can we solve online?

[Gupta L. SODA 20] [Coester, Naor, L., Talmon SPAA 22]

Take Away

<u>**Q</u>: What general**</u> classes of optimization problems can we solve online?

[Gupta L. SODA 20] [Coester, Naor, L., Talmon SPAA 22]

<u>A</u>: Any problem expressible as Submodular Cover

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

$f(\mathbf{\nabla}) \ge f(\mathbf{\nabla}), \mathbf{\Theta})$

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

$f(\forall) \geq f(\forall), (\mathbf{v})$

Theme II — Stable Algorithms

New model: inserts AND deletes.

New model: inserts AND deletes.

New model: inserts AND deletes.

New model: inserts AND deletes.

New model: inserts AND deletes.

New model: inserts AND deletes.

New model: inserts AND deletes.

New model: inserts AND deletes.

New model: inserts AND deletes.

New model: inserts AND deletes.

New model: inserts AND deletes.

Algorithm now allowed limited # edits, a.k.a. recourse.

Q: Can we understand recourse/approximation tradeoffs?

Dynamic Submodular Cover [Gupta L. FOCS 20]

$\min c(S)$ $\sum f_i(S) \ge n$

c(S)

[Gupta L. FOCS 20]

Theorem [Gupta L. FOCS 20]:

Polynomial time algo for **Dynamic Submod Cover with:** (i) approximation $O(\log n)$. (ii) recourse $\tilde{O}(1)$.

[Gupta L. FOCS 20]

Theorem [Gupta L. FOCS 20]:

Polynomial time algo for **Dynamic Submod Cover with:** (i) approximation $O(\log n)$. (ii) recourse $\tilde{O}(1)$.

Optimal!

[Gupta L. FOCS 20]

Theorem [Gupta L. FOCS 20]:

Polynomial time algo for **Dynamic Submod Cover with:** (i) approximation $O(\log n)$. (ii) recourse $\tilde{O}(1)$.

Optimal!

Technical Ingredient: Template for converting greedy algos to local search algos, + Tsallis Entropy potential for analysis!

<u>Online</u>

- Inserts Only
- Decisions are *irrevocable*

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are *irrevocable*

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are *irrevocable*

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are *irrevocable*

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are *irrevocable*

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are *irrevocable*

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are *irrevocable*

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are *irrevocable*

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are *irrevocable*

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are *irrevocable*

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are *irrevocable*

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are *irrevocable*

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are *irrevocable*

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are **irrevocable**

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are *irrevocable*

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are **irrevocable**

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are **irrevocable**

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

<u>Online</u>

- Inserts Only
- Decisions are <u>irrevocable</u>

<u>Theorem (Online)</u> [Gupta L. SODA 20]:

Approximation $O(\log^2 n)$.

Dynamic

- Inserts + Deletes
- Want minimum # edits, a.k.a. recourse.

Theorem (Dynamic) [Gupta L. FOCS 20]:

(i) Approximation $O(\log n)$. (ii) Recourse $\tilde{O}(1)$.

Dynamic Submodular Cover [Gupta L. FOCS 20]

Dynamic Set Cover

Submodular Cover

Dynamic Submodular Cover [Gupta L. FOCS 20]

Dynamic Set Cover

Dynamic Submodular Cover [GL.20]

Submodular Cover

Set Cover

Dynamic Submodular Cover [Gupta L. FOCS 20]

Dynamic Set Cover

Modeling power of Submodular Cover + Dynamic.

Dynamic Submodular Cover [GL.20]

Submodular Cover

Set Cover

Most work (mine included!) based on 1-off combinatorial insights.

Most work (mine included!) based on 1-off combinatorial insights.

• Difficult to come up with.

Most work (mine included!) based on 1-off combinatorial insights.

• Difficult to come up with.

• Difficult to generalize.

Most work (mine included!) based on 1-off combinatorial insights.

• Difficult to come up with.

• Difficult to generalize.

General recipe for designing stable algorithms?

[Bhattacharya, Buchbinder, L., Saranurak, In submission]

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]: **Dynamic Linear Programming with** movement $O(\log n) \cdot OPT$.

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]: **Dynamic Linear Programming with** movement $O(\log n) \cdot OPT$.

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]: **Dynamic Linear Programming with** movement $O(\log n) \cdot OPT$.

 $B_1 x \leq 1$

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]: **Dynamic Linear Programming with** movement $O(\log n) \cdot OPT$.

 $B_1 x \leq 1$

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]: **Dynamic Linear Programming with** movement $O(\log n) \cdot OPT$.

 $A_1 x \ge 1$ $B_1 x \leq 1$

[Bhattacharya, Buchbinder, L., Saranurak, In submission

$x \ge 0$

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]: **Dynamic Linear Programming with** movement $O(\log n) \cdot OPT$.

 $B_1 x \leq 1$

[Bhattacharya, Buchbinder, L., Saranurak, In submission

$A_1 x \ge 1$ $x \ge 0$

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]: Dynamic Linear Programming with movement $O(\log n) \cdot OPT$.

 $A_1 x \ge 1$ $B_1 x \le 1$

 $x \ge 0$

[Bhattacharya, Buchbinder, L., Saranurak, In submission]

 $A_2 x \ge 1$ $B_2 x \le 1$ $x \ge 0$

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]: Dynamic Linear Programming with movement $O(\log n) \cdot OPT$.

 $A_1 x \ge 1$ $B_1 x \le 1$

 $x \ge 0$

[Bhattacharya, Buchbinder, L., Saranurak, In submission]

 $A_2 x \ge 1$ $B_2 x \le 1$ $x \ge 0$

 $A_{3}x \ge 1$ $B_{3}x \le 1$ $x \ge 0$

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]: Dynamic Linear Programming with movement $O(\log n) \cdot OPT$. $A_1 x \ge 1$ $B_1 x \le 1$

 $x \ge 0$

[Bhattacharya, Buchbinder, L., Saranurak, In submission]

 $A_2 x \ge 1$ $B_2 x \le 1$ $x \ge 0$

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]: Dynamic Linear Programming with movement $O(\log n) \cdot OPT$. $A_1 x \ge 1$

Require Mixed Packing/ Covering LPs, i.e. constraints have positive coefficients. [Bhattacharya, Buchbinder, L., Saranurak, In submission]

 $A_2 x \ge 1$

 $B_2 x \leq 1$

 $x \ge 0$

 $A_3 x \ge 1$ $B_3 x \leq 1$ $x \ge 0$

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]: Dynamic Linear Programming with movement $O(\log n) \cdot OPT$.

Require Mixed Packing/ Covering LPs, i.e. constraints have positive coefficients.

 $A_1 x \ge 1$

Rounding gives improved results for Dynamic Set Cover, Load Balancing, Matching, Minimum Spanning Tree. [Bhattacharya, Buchbinder, L., Saranurak, In submission]

 $A_2 x \ge 1$

 $B_2 x \leq 1$

 $x \ge 0$

 $A_3 x \ge 1$ $B_3 x \leq 1$ $x \ge 0$

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]: Dynamic Linear Programming with movement $O(\log n) \cdot OPT$.

Require Mixed Packing/ Covering LPs, i.e. constraints have positive coefficients.

 $A_1 x \ge 1$

Rounding gives improved results for Dynamic Set Cover, Load Balancing, Matching, Minimum Spanning Tree. [Bhattacharya, Buchbinder, L., Saranurak, In submission]

 $A_2 x \ge 1$

 $B_2 x \leq 1$

 $x \ge 0$

 $A_3 x \ge 1$ $B_3 x \leq 1$ $x \ge 0$

Technical Ingredient: Max Entropy Principle.

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]: **Dynamic Linear Programming with** movement $O(\log n) \cdot OPT$. $A_1 x \ge 1$

Require Mixed Packing/ Covering LPs, i.e. constraints have positive coefficients.

Optimal!

Rounding gives improved results for **Dynamic Set Cover, Load Balancing,** Matching, Minimum Spanning Tree.

[Bhattacharya, Buchbinder, L., Saranurak, In submission

 $A_2 x \ge 1$

 $B_2 x \leq 1$

 $x \ge 0$

 $A_3 x \ge 1$ $B_3 x \leq 1$ $x \ge 0$

Technical Ingredient: Max Entropy Principle.

Take Away II

<u>**Q</u>: Can we understand** recourse/approximation tradeoffs?</u>

[Gupta L. FOCS 20] [Bhattacharya, Buchbinder, L., Saranurak, In submission]

Take Away II

<u>**Q</u>: Can we understand** recourse/approximation tradeoffs?</u> [Gupta L. FOCS 20] [Bhattacharya, Buchbinder, L., Saranurak, In submission]

<u>A1</u>: Get optimal tradeoff for Submodular Cover class.

Take Away II

<u>**Q</u>: Can we understand** recourse/approximation tradeoffs?</u> [Gupta L. FOCS 20] [Bhattacharya, Buchbinder, L., Saranurak, In submission]

A1: Get optimal tradeoff for Submodular Cover class. A2: Get stable Dynamic analogs of fundamental algorithmic primitive, Linear Programming.

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

$f(\forall) \geq f(\forall), (\mathbf{v})$

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

$f(\forall) \geq f(\forall), (\mathbf{v})$

Theme III — Beyond Worst-Case Analysis

*s*₁ *s*₂ s₃ S_4 *S*₅ *s*₆

*s*₁ *s*₂ S₃ *s*₄ *S*₅ *s*₆

 s_1 *s*₂ *S*₃ S_4 *S*₅ s_6

Approximation: $O(\log n)$ [Johnson 74], [Lovasz 75], [Chvatal 79]

 s_1 *s*₂ *S*₃ S_4 *S*₅ S_6

Approximation: $O(\log n)$ [Johnson 74], [Lovasz 75], [Chvatal 79]

> Optimal! (in poly time)

*s*₆

*s*₆ •

*s*₆ •

 s_1

*s*₂

S₆

 S_1

*s*₂

*S*₃ S₆

Approximation: $O(\log^2 n)$ [Alon+ 03] [Buchbinder Naor 09]

Approximation: $O(\log^2 n)$ [Alon+ 03] [Buchbinder Naor 09]

> Optimal! (in poly time)

Approximation: $O(\log^2 n)$ [Alon+ 03] [Buchbinder Naor 09]

> Optimal! (in poly time)

Q: What happens beyond the worst case?

*s*₆

*s*₆

 S_5 S_6

 S_1

*s*₂

S₃

 $v_1 \sim D_1$

 $v_2 \sim D_2$

 $v_1 \sim D_1$

 $v_2 \sim D_2$

 $v_1 \sim D_1$

 $v_2 \sim D_2$

 $v_3 \sim D_3$

 $v_1 \sim D_1$ $v_2 \sim D_2$

 $v_3 \sim D_3$

 $v_4 \sim D_4$

 $v_1 \sim D_1$ $v_2 \sim D_2$ $v_3 \sim D_3$

 $v_4 \sim D_4$

 $v_5 \sim D_5$

 $v_1 \sim D_1$ $v_2 \sim D_2$ $v_3 \sim D_3$

 $v_4 \sim D_4$

 $v_5 \sim D_5$

 $v_1 \sim D_1$

 $v_2 \sim D_2$

 $v_3 \sim D_3$

 $v_4 \sim D_4$

 $v_5 \sim D_5$

 $v_6 \sim D_6$

Instance Random Adversarial Random Arrival Order Adversarial O(log² n) [Alon+ 03] [Buchbinder Naor 09]

The Landscape

Arrival Order

Instance

	Random	Adversa
Random	O(log(n [support size])) [Gupta Grandoni Leonardi Miettinen Sankowski Singh 08]	
Adversarial		O(log ² [Alon+ 0 [Buchbing Naor 09

arial

² n) 03] nder)9]

Arrival Order

Instance

	Random	Adversa
Random	O(log(n [support size])) [Gupta Grandoni Leonardi Miettinen Sankowski Singh 08]	
Adversarial		O(log ² [Alon+ 04 [Buchbind Naor 09

Instance

Instance

Was believed $O(\log^2 n)$ best possible [Gupta+ 09]...

. .

Instance

	Random	Adversaria Se
Random	O(log(n [support size])) [Gupta Grandoni Leonardi Miettinen Sankowski Singh 08]	O(log n) Our work
Adversarial		O(log² n) [Alon+ 03] [Buchbinder Naor 09]
	Prophet	

Arrival Order

arial Secretary n) ork n

Theorem [Gupta Kehne L. FOCS 21]:

Polynomial time algo for <u>secretary</u> Covering IP with approximation $O(\log n)$.

Instance

	Random	Adversa
Random	O(log(n [support size])) [Gupta Grandoni Leonardi Miettinen Sankowski Singh 08]	O(log Our wo
Adversarial		O(log² [Alon+ 0 [Buchbind Naor 09
	Prophet	

Arrival Order

arial Secretary n) n)

)3] der

Theorem [Gupta Kehne L. FOCS 21]: Polynomial time algo for <u>secretary</u> Covering IP with approximation $O(\log n)$.

New algorithm, LearnOrCover! Not just new analysis of old algorithm.

Arrival Order

Instance

	Random	Adversa
Random	O(log(n [support size])) [Gupta Grandoni Leonardi Miettinen Sankowski Singh 08]	O(log Our wo
Adversarial	O(log n) Our work	O(log ² [Alon+ 0 [Buchbing Naor 09
	Prophet	

arial Secretary n) ork

03] nder)9]

Theorem [Gupta Kehne L. FOCS 21]:

Polynomial time algo for secretary Covering IP with approximation $O(\log n)$.

Theorem [Gupta Kehne L. In submission]:

Polynomial time algo for prophet Covering IPs with approximation $O(\log n)$.

Arrival Order

Instance

Secretary

Theorem [Gupta Kehne L. FOCS 21]:

Polynomial time algo for secretary Covering IP with approximation $O(\log n)$.

Theorem [Gupta Kehne L. In submission]:

Polynomial time algo for **prophet** Covering IPs with approximation $O(\log n)$.

Only need 1 sample from each $D_i!$

Bonus! Algorithm! 1-pass

Secretary

Theorem [Gupta Kehne L. FOCS 21]:

Polynomial time algo for secretary Covering IP with approximation $O(\log n)$.

Theorem [Gupta Kehne L. In submission]:

Polynomial time algo for **prophet** Covering IPs with approximation $O(\log n)$.

LearnOrCover

LearnOrCover

LearnOrCover

@ time t, element v arrives: If v covered, do nothing.

@ time t, element v arrives: If v covered, do nothing. Else: (1) Buy random set R from \mathscr{P} to cover v. (11) "Prune" $P \not\ni v$ from \mathscr{P} .

@ time t, element v arrives: If v covered, do nothing. Else: (1) Buy random set R from \mathscr{P} to cover v. (11) "Prune" $P \not\ni v$ from \mathscr{P} .

@ time t, element v arrives: If v covered, do nothing. Else: (1) Buy random set R from \mathscr{P} to cover v. (11) "Prune" $P \not\ni v$ from \mathscr{P} .

@ time t, element v arrives: If v covered, do nothing. Else: (1) Buy random set R from \mathscr{P} to cover v. (11) "Prune" $P \not\ni v$ from \mathscr{P} .

@ time t, element v arrives: If v covered, do nothing. Else: (1) Buy random set R from \mathscr{P} to cover v. (11) "Prune" $P \not\ni v$ from \mathscr{P} .


```
@ time t, element v arrives:
If v covered, do nothing.
Else:
   (I) Buy random set R from \mathscr{P} to cover v.
   (II) "Prune" P \not\ni v from \mathscr{P}.
```



```
@ time t, element v arrives:
If v covered, do nothing.
Else:
   (I) Buy random set R from \mathscr{P} to cover v.
   (II) "Prune" P \not\ni v from \mathscr{P}.
```



```
@ time t, element v arrives:
If v covered, do nothing.
Else:
   (I) Buy random set R from \mathscr{P} to cover v.
   (II) "Prune" P \not\ni v from \mathscr{P}.
```



```
@ time t, element v arrives:
If v covered, do nothing.
Else:
   (I) Buy random set R from \mathscr{P} to cover v.
   (II) "Prune" P \not\ni v from \mathscr{P}.
```



```
@ time t, element v arrives:
If v covered, do nothing.
Else:
   (I) Buy random set R from \mathscr{P} to cover v.
   (II) "Prune" P \not\ni v from \mathscr{P}.
```



```
@ time t, element v arrives:
If v covered, do nothing.
Else:
   (I) Buy random set R from \mathscr{P} to cover v.
   (II) "Prune" P \not\ni v from \mathscr{P}.
```



```
@ time t, element v arrives:
If v covered, do nothing.
Else:
   (I) Buy random set R from \mathscr{P} to cover v.
   (II) "Prune" P \not\ni v from \mathscr{P}.
```



```
@ time t, element v arrives:
If v covered, do nothing.
Else:
   (I) Buy random set R from \mathscr{P} to cover v.
   (II) "Prune" P \not\ni v from \mathscr{P}.
```



```
@ time t, element v arrives:
If v covered, do nothing.
Else:
   (I) Buy random set R from \mathscr{P} to cover v.
   (II) "Prune" P \not\ni v from \mathscr{P}.
```



```
@ time t, element v arrives:
If v covered, do nothing.
Else:
   (I) Buy random set R from \mathscr{P} to cover v.
   (II) "Prune" P \not\ni v from \mathscr{P}.
```



```
@ time t, element v arrives:
If v covered, do nothing.
Else:
   (I) Buy random set R from \mathscr{P} to cover v.
   (II) "Prune" P \not\ni v from \mathscr{P}.
```



```
@ time t, element v arrives:
If v covered, do nothing.
Else:
   (I) Buy random set R from \mathscr{P} to cover v.
   (II) "Prune" P \not\ni v from \mathscr{P}.
```



```
@ time t, element v arrives:
If v covered, do nothing.
Else:
   (I) Buy random set R from \mathscr{P} to cover v.
   (II) "Prune" P \not\ni v from \mathscr{P}.
```


LearnOrCover [GKL. 21] enters the canon In syllabus of Algorithmic Foundations course @ EPFL

Offi	turer	2 <u>Ola Svensson</u> r s Wednesdays 14:00 - 16:00 in INJ 112 Mondays 14-16 in INM201.
Short des	criptio	n
emphases th	e illustra	course is to give PhD students a toolbox of algorithmic technique ition of the main ideas of these techniques. We prefer simplicity o mic techniques that we plan to cover include
Greed	/ algorith	nms
Local s	search a	Igorithms
 Linear 	program	nming
0	Random	ized rounding (independent, threshold, exponential clocks)
0	Duality (primal-dual algorithms, dual fitting, and the use of complementar
 Multipl 	Sauve W	veight update
• Online	algorith	ms in adversarial and random order streams primal-dual, potenti
In addition, to	attendi	ng the lectures, students are required to submit a project report w
Schedule	and re	eferences
• Lectur	e 1 (Mo	nday February 27): Introduction. Greedy and Local Search Algo
	re 2 (Mo ce analy	nday March 6): Linear programming, Threshold and Randomize
	•	nday March 13): Exponential clocks, TU matrices, VC-dimension here and here
• Lectu	e 4 (Mo	nday March 20):TU matrices, VC-dimension. References: Ola's

lays

in order to successfully address their favorite problems. The course ver details and we illustrate the algorithmic techniques in the simple and clean setting of the set cover

ty slackness)

al function, and projection based)

here they apply one of the algorithmic techniques in a more complex setting.

rithms. References: Greedy algorithm, Local Search Algorithm (Section 2.1) l rounding. References: <u>LPs and Threshold Rounding, Independent Randomized Rounding,</u> see also <u>for a</u>

References: Appendix A for exponential clocks, TU matrices and consecutive ones property, for VC-

<u>otes</u>

Take Away III

Q: What happens beyond the worst case?

[Gupta Kehne L. FOCS 21] [Gupta Kehne L. In Submission]

Take Away III

Q: What happens beyond the worst case?

[Gupta Kehne L. FOCS 21] [Gupta Kehne L. In Submission]

A1: Random order is as easy as offline.

Take Away III

Q: What happens beyond the worst case?

[Gupta Kehne L. FOCS 21] [Gupta Kehne L. In Submission]

A1: Random order is as easy as offline.

A2: Random instance is as easy as offline.

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

$f(\forall) \geq f(\forall), (\mathbf{v})$

Theme I — Submodular Optimization

Theme II — Stable Algorithms

Theme III — Beyond Worst-Case Analysis

Conclusion

$f(\forall) \geq f(\forall), (\mathbf{v})$

Conclusion

My Work

Competitive Algorithms for Block-Aware Caching [Coester, Naor, L., Talmon, SPAA 22]

Chasing Positive Bodies [Bhattacharya, Buchbinder, "Saranurak, In Submission]

Fully-Dynamic Submodular Cover with **Bounded Recourse** [Gupta, L., FOCS 20]

Dynamic

Online

The Online Submodular **Cover Problem** [Gupta, L., SODA 20]

> Set Covering with Our **Eyes Wide Shut** [Gupta, Kehne, L., In Submission]

Random Order Set Cover is as Easy as Offline [Gupta, Kehne, L., FOCS 21]

> **Robust Subspace** Approximation in a Stream [L., Sevekari, Woodruff, NeurIPS 18]

Streaming Submodular **Matching Meets the Primal Dual Method** [L., Wajc, SODA 21]

Finding Skewed Subcubes Under a Distribution [Gopalan, L., Wieder, ITCS 20]

FigureSeer: Parsing Result-**Figures in Research Papers** [Siegel, Horvitz, L., Divvala, Farhadi, ECCV 16]

Beyond Sentential Semantic Parsing: Tackling the Math SAT with a Cascade of Tree Transducers [Hopkins, Petrscu-Prahova, L., Le Bras, Herrasti, Joshi, EMNLP 17]

... and others in AI, ML, Fairness

1. Does LearnOrCover idea solve other problems? Do ideas transfer to random order Streaming? Unified theory of random order algorithms?

- 1. Does LearnOrCover idea solve other problems? Do ideas transfer to random order Streaming? Unified theory of random order algorithms?
- 2. Other "chaseable" constraint families, beyond mixed packing/covering? Stable clustering problems?

1. Does LearnOrCover idea solve other problems? Do ideas transfer to random order Streaming? Unified theory of random order algorithms?

2. Other "chaseable" constraint families, beyond mixed packing/covering? Stable clustering problems? (Big demand for this from industry!)

- 1. Does LearnOrCover idea solve other problems? Do ideas transfer to random order Streaming? Unified theory of random order algorithms?
- 2. Other "chaseable" constraint families, beyond mixed packing/covering? Stable clustering problems? (Big demand for this from industry!)
- 3. Do ideas work for update-time Dynamic algorithms?

1. Submodularity Under the Hood: can we get better algorithms by exploiting "submodular aspects" of non-submodular problems?

problems?

yesterday? Beyond Bayesian/Stochastic models? Non-stationary generative processes?

1. Submodularity Under the Hood: can we get better algorithms by exploiting "submodular aspects" of non-submodular

2. Algorithms meet Data: How can we exploit things we learned

- problems?
- yesterday? Beyond Bayesian/Stochastic models? Non-stationary generative processes?
- 3. Apply Theory in Practice: Does my work inform useful

1. Submodularity Under the Hood: can we get better algorithms by exploiting "submodular aspects" of non-submodular

2. Algorithms meet Data: How can we exploit things we learned

heuristics? New collaborations on real world applications?

1. Simplicity: better in practice & easier to explain.

1. Simplicity: better in practice & easier to explain.

2. Abstraction: gets at deep principle explaining a phenomenon & automatically yields many applications.

1. Simplicity: better in practice & easier to explain.

2. Abstraction: gets at deep principle explaining a phenomenon & automatically yields many applications.

3. Practical Impact: stay anchored to needs of real world & plentiful source of inspiration.

Algorithms & Uncertainty

Algorithms & Uncertainty

Intersection of many beautiful branches of CS & Math!

Algorithms & Uncertainty

Intersection of many beautiful branches of CS & Math!

Fun & approachable on-ramp to research!

Recent/Current Collaborators

- Carnegie Mellon University: Anupam Gupta, Anish Sevekari, David Woodruff
- Harvard: Gregory Kehne
- U Michigan: Thatchaphol Saranurak
- Duke: Debmalya Panigrahi
- Tel Aviv University: Niv Buchbinder, Haim Kaplan, Yaniv Sadeh
- Technion: Seffi Naor, Ohad Talmon, David Naori
- Oxford: Christian Coester

 University of Warwick: Sayan Bhattacharya

- London School of Economics: Neil Olver, Franziska Eberle
- University of Bremen: Nicole Megow
- Google Research: Ravi Kumar, Rajesh Jayaram, David Wajc
- Apple: Parikshit Gopalan
- VMWare: Udi Wieder

Competitive Algorithms for Block-Aware Caching [Coester, Naor, L., Talmon, SPAA 22]

Chasing Positive Bodies [Bhattacharya, Buchbinder, , Saranurak, In Submission]

Fully-Dynamic Submodular Cover with **Bounded Recourse** [Gupta, L., FOCS 20]

Thanks

Dynamic

Online

The Online Submodular **Cover Problem** [Gupta, L., SODA 20]

> Set Covering with Our **Eyes Wide Shut** [Gupta, Kehne, L., In Submission]

Random Order Set Cover is as Easy as Offline [Gupta, Kehne, L., FOCS 21]

> **Robust Subspace** Approximation in a Stream [L., Sevekari, Woodruff, NeurIPS 18]

Streaming Submodular **Matching Meets the Primal Dual Method** [L., Wajc, SODA 21]

Finding Skewed Subcubes Under a Distribution [Gopalan, L., Wieder, ITCS 20]

FigureSeer: Parsing Result-**Figures in Research Papers** [Siegel, Horvitz, L., Divvala, Farhadi, ECCV 16]

Beyond Sentential Semantic Parsing: Tackling the Math SAT with a Cascade of Tree Transducers [Hopkins, Petrscu-Prahova, L., Le Bras, Herrasti, Joshi, EMNLP 17]

