Optimization When You Don't Know the Future

Roie Levin

Introduction

My Research

I research algorithms for optimization in the face of uncertainty.

Classical CS is about Computational Challenges

Classical CS is about Computational Challenges

Classical CS is about Computational Challenges

ShortestPath

Knapsack

Classical CS is about Computational Challenges

Knapsack

Computationally Easy
Computationally Hard

Classical CS is about Computational Challenges

Computationally Easy

Computationally Hard

Classical CS is about Computational Challenges

Classical CS is about Computational Challenges

Beautiful theory of Approximation Algorithms!

A Different Source of Hardness: Uncertainty

A Different Source of Hardness: Uncertainty

FindMax

A Different Source of Hardness: Uncertainty

FindMax

A Different Source of Hardness: Uncertainty

FindMax

A Different Source of Hardness: Uncertainty

FindMax
Online FindMax

```
44
```


A Different Source of Hardness: Uncertainty

FindMax
Online FindMax

```
4
```


A Different Source of Hardness: Uncertainty

FindMax
Online FindMax

```
4
```


A Different Source of Hardness: Uncertainty

FindMax
Online FindMax

```
4
```


A Different Source of Hardness: Uncertainty

FindMax
Online FindMax

```
44
```


A Different Source of Hardness: Uncertainty

FindMax
Online FindMax

```
44
```


A Different Source of Hardness: Uncertainty

FindMax

A Different Source of Hardness: Uncertainty

FindMax
Online FindMax

```
\(\begin{array}{llllll}4 & 1 & 10 & -2 & 22 & 7\end{array}\)
```


A Different Source of Hardness: Uncertainty

FindMax
Online FindMax

```
4
```


A Different Source of Hardness: Uncertainty

FindMax
Online FindMax

A Different Source of Hardness: Uncertainty

FindMax
Online FindMax

A Different Source of Hardness: Uncertainty

FindMax
Online FindMax

A Different Source of Hardness: Uncertainty

FindMax
Online FindMax

```
4}
```


A Different Source of Hardness: Uncertainty

FindMax
Online FindMax

A Different Source of Hardness: Uncertainty

FindMax
Online FindMax

A Different Source of Hardness: Uncertainty

FindMax
Online FindMax

```
4
```

Full Information
Uncertain

A Different Source of Hardness: Uncertainty

Beautiful theory of Decision Making Under Uncertainty!

The Computation/Information Landscape

Running Example: Set Cover

Running Example: Set Cover

Running Example: Set Cover

Why should we care?

Running Example: Set Cover

Why should we care?

1. Natural applications to resource allocation.

Running Example: Set Cover

Why should we care?

1. Natural applications to resource allocation.

Running Example: Set Cover

Why should we care?

1. Natural applications to resource allocation.

Running Example: Set Cover

Why should we care?

1. Natural applications to resource allocation.
2. Sandbox for fundamental algorithmic ideas.

Running Example: Set Cover

Why should we care?

1. Natural applications to resource allocation.
2. Sandbox for fundamental algorithmic ideas.

$$
\begin{gathered}
\min c^{\top} x \\
A x \geq 1 \\
x \in \mathbb{Z}_{\geq 0}^{n}
\end{gathered}
$$

Running Example: Set Cover

Why should we care?

1. Natural applications to resource allocation.
2. Sandbox for fundamental algorithmic ideas.

$$
\begin{gathered}
\min c^{\top} x \\
A x \geq 1 \\
x \in \mathbb{Z}_{\geq 0}^{n}
\end{gathered}
$$

Special case of Integer Programming where A is $0 / 1$.

Running Example: Set Cover

Why should we care?

1. Natural applications to resource allocation.
2. Sandbox for fundamental algorithmic ideas.

$$
\begin{array}{ll}
\min c^{\top} x & \text { Special case of } \\
A x \geq 1 & \text { Integer Programming } \\
x \in \mathbb{Z}_{\geq 0}^{n} & \text { where } \mathrm{A} \text { is } 0 / 1 . \\
\hline
\end{array}
$$

Version 0 of EVERY discrete optimization problem!

Running Example: Set Cover

Why should we care?

1. Natural applications to resource allocation.
2. Sandbox for fundamental algorithmic ideas.
$\min c^{\top} x$
$A x \geq 1$
$x \in \mathbb{Z}_{\geq 0}^{n}$

Special case of Integer Programming where A is $0 / 1$.

Version 0 of EVERY discrete optimization problem!
3. Fast algos get good approximation: $O(\log n)$ [Johnson 74], [Lovasz 75], [Chvatal 79]

Running Example: Set Cover

What if we don't know user demand a-priori?

Running Example: Set Cover

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

Running Example: Set Cover

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Running Example: Set Cover

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Running Example: Set Cover

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Running Example: Set Cover

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Running Example: Set Cover

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Running Example: Set Cover

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Running Example: Set Cover

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Running Example: Set Cover

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Running Example: Set Cover

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Running Example: Set Cover

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Running Example: Set Cover

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Q: Can we get good approximation, efficiently, despite not knowing the future?

Running Example: Set Cover

What if we don't know user demand a-priori?

Requests arrive over time, need to satisfy immediately.

Expensive to open satellites!
Model decisions as irrevocable.

Q: Can we get good approximation, efficiently, despite not knowing the future?

A: Yes! Approximation: $O\left(\log ^{2} n\right)$ [Alon Awerbuch Azar Buchbinder Naor 03] [Buchbinder Naor 09], this is optimal for polynomial time algorithms.

My Work
Online
Dynamic

My Work
Online
Dynamic

No take-backs

My Work

Online
Dynamic

No take-backs
x
x
x
x

My Work

Online

Dynamic

No take-backs

My Work

Online
Dynamic

No take-backs

My Work

Online

Dynamic

No take-backs

My Work

Online
Dynamic

No take-backs

My Work

Online
Dynamic

No take-backs

My Work

Online

No take-backs

Dynamic

Low movement

My Work

Online

No take－backs

Dynamic

Low movement
がメx゙メx

My Work

Online

No take-backs

Dynamic

Low movement

My Work

Online

No take-backs

Dynamic

Low movement

My Work

Online

No take-backs

Dynamic

Low movement

My Work

Online

No take-backs

Dynamic

Low movement

My Work

Online

No take-backs

Dynamic

Low movement

My Work

Online

No take-backs

Dynamic

My Work

Online

No take-backs

Dynamic

My Work

Online

No take-backs

Dynamic

My Work

Online

No take-backs

Dynamic

Low movement

My Work

Online

No take-backs

Dynamic

Low movement

My Work

Online

No take-backs

Dynamic

My Work

Online

No take-backs

Dynamic

My Work

Online

No take-backs

Dynamic

Low movement

My Work

Online

No take-backs

Dynamic
Streaming

Low movement
Low memory

My Work

Online

No take-backs

Dynamic
Streaming

Low movement
Low memory

My Work

Online

No take-backs

Dynamic
Streaming

Low movement
Low memory

My Work

Online

No take-backs

Dynamic
Streaming

Low movement
Low memory

My Work

Dynamic

Online

My Work

Online

The Online Submodular

Competitive Algorithms for Block-Aware Caching [Coester, Naor, Talmon, SPAA 22]

Chasing Positive Bodies
[Bhattacharya, Buchbinder,
..,Saranurak, In Submission]

Fully-Dynamic Submodular Cover with Bounded Recourse [Gupta, L., FOCS 20]

Set Covering with Our Eyes Wide Shut Gupta, Kehne, L., In Submission]

Random Order Set Cover is as Easy as Offline [Gupta, Kehne, L., FOCS 21]

Dynamic
Streaming Submodular Matching Meets the Primal Dual Method [L., Wajc, SODA 21]

My Work

Chasing Positive Bodies
Bhattacharya, Buchbinder,
., Saranurak, In Submission]

Fully-Dynamic Submodular Cover with Bounded Recourse [Gupta, L., FOCS 20]

Set Covering with Our Eyes Wide Shut [Gupta, Kehne, L., In

Submission]
Random Order Set Cover is as Easy as Offline [Gupta, Kehne, L., FOCS 21] [Siegel, Horvitz, L., Divvala,

Farhadi, ECCV 16]
Beyond Sentential Semantic Parsing: Tackling the Math SAT with a Cascade of Tree Transducers
[Hopkins, Petrscu-Prahova, L., Le Bras, Herrasti, Joshi, EMNLP 17]
... and others in AI, ML, Fairness

Robust Subspace Approximation in a Stream [L., Sevekari, Woodruff, NeurIPS 18]

Outline

Theme I - Submodular Optimization

Theme II - Stable Algorithms

Theme III - Beyond Worst-Case Analysis

Conclusion

Outline

Theme I - Submodular Optimization
$f(\because \mid \nu) \geq f(\because \mid \geqslant)$

Theme II - Stable Algorithms

Theme III - Beyond Worst-Case Analysis

Conclusion

Theme I - Submodular Optimization

Beyond Set Cover

Q: What general classes
of optimization problems
can we solve online?

Beyond Set Cover

Q: What general classes
of optimization problems can we solve online?

Abstracting the Problem

Abstracting the Problem

-Universe of choices: $\mathcal{S}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$

Abstracting the Problem

-Universe of choices: $\mathcal{S}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
-Solution:
$S \subseteq \mathcal{S}$

Abstracting the Problem

-Universe of choices: $\mathcal{S}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
-Solution:
$S \subseteq \delta$
-Cost: $c(S)$

Abstracting the Problem

-Universe of choices: $\mathcal{S}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
-Solution:
$S \subseteq \mathcal{S}$
-Cost: $c(S)$
-Coverage "Quality": $\quad f(S)$

Abstracting the Problem

-Universe of choices: $\mathcal{S}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
-Solution:
$S \subseteq \delta$
-Cost: $c(S)$
-Coverage "Quality": $\quad f(S)$

Want min cost solution with max coverage!

Abstracting the Problem

.Universe of choices: $\mathcal{S}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
-Solution:
$S \subseteq \mathcal{S}$
-Cost:
$c(S)$
-Coverage "Quality": $\quad f(S)$

$$
\begin{aligned}
& \min _{S \subseteq \mathcal{S}} c(S) \\
& f(S) \geq n
\end{aligned}
$$

Want min cost solution with max coverage!

Abstracting the Problem

.Universe of choices: $\mathcal{S}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
-Solution:
$S \subseteq \mathcal{S}$
-Cost:
$c(S)$
-Coverage "Quality": $\quad f(S)$

$\min c(S)$ $S \subseteq \mathcal{S}$
 $f(S) \geq n$

Want min cost solution with max coverage!
$f: 2^{\mathscr{N}} \rightarrow \mathbb{R}$ is monotone, nonnegative and submodular.

Abstracting the Problem

a.k.a. Submodular Cover [Wolsey 82]

.Universe of choices: $\mathcal{S}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
-Solution:
$S \subseteq \mathcal{S}$
-Cost:
$c(S)$
-Coverage "Quality": $\quad f(S)$

$\min c(S)$ $S \subseteq \mathcal{S}$
 $f(S) \geq n$

Want min cost solution with max coverage!
$f: 2^{\mathcal{N}} \rightarrow \mathbb{R}$ is monotone, nonnegative and submodular.

Abstracting the Problem

a.k.a. Submodular Cover [Wolsey 82]

.Universe of choices: $\mathcal{S}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
-Solution:
$S \subseteq \mathcal{S}$
-Cost:
$c(S)$
-Coverage "Quality": $\quad f(S)$

Want min cost solution with max coverage!

$\min c(S)$ $S \subseteq \mathcal{S}$
 $f(S) \geq n$

We will port this online!
$f: 2^{\mathscr{N}} \rightarrow \mathbb{R}$ is monotone, nonnegative and submodular.

Submodularity

Submodularity

a.k.a. "Decreasing Marginal Returns!"

Submodularity

a.k.a. "Decreasing Marginal Returns!"

Definition: f is submodular if, $\forall A \subseteq B, x \notin B$,

Submodularity

a.k.a. "Decreasing Marginal Returns!"

Definition: f is submodular if, $\forall A \subseteq B, x \notin B$,

$$
f(A+x)-f(A) \geq f(B+x)-f(B)
$$

Submodularity

a.k.a. "Decreasing Marginal Returns!"

Definition: f is submodular if, $\forall A \subseteq B, x \notin B$,

$$
\begin{aligned}
f(A+x)-f(A) & \geq f(B+x)-f(B) \\
\text { i.e. } \quad f(x \mid A) & \geq f(x \mid B)
\end{aligned}
$$

Submodularity

a.k.a. "Decreasing Marginal Returns!"

Definition: f is submodular if, $\forall A \subseteq B, x \notin B$,

$$
\begin{aligned}
f(A+x)-f(A) & \geq f(B+x)-f(B) \\
\text { i.e. } \quad f(x \mid A) & \geq f(x \mid B)
\end{aligned}
$$

Why care about Submodular Cover?

Why care about Submodular Cover?

1. Highly expressive! Examples of Submodular Cover:

Why care about Submodular Cover?

1. Highly expressive! Examples of Submodular Cover:

Robot
Exploration

Why care about Submodular Cover?

1. Highly expressive! Examples of Submodular Cover:

Robot
Exploration

Influence
Maximization

Why care about Submodular Cover?

1. Highly expressive! Examples of Submodular Cover:

Robot
Exploration

Influence
Maximization

Feature Selection

Why care about Submodular Cover?

1. Highly expressive! Examples of Submodular Cover:

Robot
Exploration

Influence
Maximization

Feature Selection

Document
Summarization

Why care about Submodular Cover?

1. Highly expressive! Examples of Submodular Cover:

Robot
Exploration

Influence
Maximization

Feature Selection

Document
Summarization

Resource allocation

Why care about Submodular Cover?

Popular to reduce to Submodular Cover!
[Goyal+ 13][Loukides Gwadera 16][Zheng+ 17][Andreev+ 09][Lee+ 13]
[Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Kortsarz Nutov 15][Jorgensen+
17][Chen+ 18][Beinhofer+ 13][Tzoumas+ 16][Tong+ 17][Liu+ 16][Mafuta
Walingo 16][Yang+ 15][Rahimian Preciado 15][Izumi+ 10][Wu+ 15], [Shin+ 23],
[Gong+ 23], [Li+ 23], [Coester, Naor, L., Talmon 22] etc...

Why care about Submodular Cover?

Popular to reduce to Submodular Cover!
[Goyal+ 13][Loukides Gwadera 16][Zheng+ 17][Andreev+ 09][Lee+ 13]
[Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Kortsarz Nutov 15][Jorgensen+
17][Chen+ 18][Beinhofer+ 13][Tzoumas+ 16][Tong+ 17][Liu+ 16][Mafuta
Walingo 16][Yang+ 15][Rahimian Preciado 15][Izumi+ 10][Wu+ 15], [Shin+ 23],
[Gong+ 23], [Li+ 23], [Coester, Naor, L., Talmon 22] etc...
Porting submod cover to unceriain settings automatically ports all applications!

Why care about Submodular Cover?

Popular to reduce to Submodular Cover!
[Goyal+ 13][Loukides Gwadera 16][Zheng+ 17][Andreev+ 09][Lee+ 13]
[Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Kortsarz Nutov 15][Jorgensen+
17][Chen+ 18][Beinhofer+ 13][Tzoumas+ 16][Tong+ 17][Liu+ 16][Mafuta
Walingo 16][Yang+ 15][Rahimian Preciado 15][Izumi+ 10][Wu+ 15], [Shin+ 23],
[Gong+ 23], [Li+ 23], [Coester, Naor, L., Talmon 22] etc...
Porting submod cover to uncerlain settings automatically ports all applications!
2. Fast algos get good approximation: $O(\log n)$ [Wolsey 82]

Why care about Submodular Cover?

Popular to reduce to Submodular Cover!
[Goyal+ 13][Loukides Gwadera 16][Zheng+ 17][Andreev+ 09][Lee+ 13]
[Lukovszki+ 18][Poularakis+ 17][Krause+ 08][Kortsarz Nutov 15][Jorgensen+
17][Chen+ 18][Beinhofer+ 13][Tzoumas+ 16][Tong+ 17][Liu+ 16][Mafuta
Walingo 16][Yang+ 15][Rahimian Preciado 15][zumi+ 10][Wu+ 15], [Shin+ 23],
[Gong+ 23], [Li+ 23], [Coester, Naor, L., Talmon 22] etc...
Porting submod cover to unceriain settings automatically ports all applications!
2. Fast algos get good approximation: $O(\log n)$ [Wolsey 82]

Punchline: Sweet spot between generality and tractability!

Online Submodular Cover [Gupta L. SODA 20]

Online Submodular Cover

Online Submodular Cover

Online Submodular Cover [Gupta L. SODA 20]

Online Submodular Cover

Online Submodular Cover

Online Submodular Cover

Theorem [Gupta L. SODA 20]:
Polynomial time algo for Online Submod Cover with approximation $O\left(\log ^{2} n\right)$.

Online Submodular Cover

 [Gupta L. SODA 20]

Theorem [Gupta L. SODA 20]:
 Polynomial time algo for Online Submod Cover with approximation $O\left(\log ^{2} n\right)$.

Online Submodular Cover

Theorem [Gupta L. SODA 20]:
 Polynomial time algo for Online Submod Cover with approximation $O\left(\log ^{2} n\right)$.

Optimal!

Technical Ingredient:

RoundOrSeparate for LP relaxation of Submodular Cover \& generalization of Mutual Information!

Online Submodular Cover [Gupta L. SODA 20]

Online Set Cover
$O\left(\log ^{2} n\right)$

Set Cover
$O(\log n)$

Online Submodular Cover [Gupta L. SODA 20]

Online Submodular Cover [Gupta L. SODA 20]

Best of both worlds: modeling power of Submodular Cover + Online.

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

프므믐

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k
n total pages, divided into blocks

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k
n total pages, divided into blocks

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

ㅁㅁㅁㅁㅁㅁㅁㅁㅁ

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

프믐

n total pages, divided into blocks

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k
n total pages, divided into blocks

ㅁㅁㅁㅁㅁㅁㅁㅁ

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k
n total pages, divided into blocks

ㅁㅁㅁㅁㅁㅁㅁㅁ

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

n total pages, divided into blocks

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k
n total pages, divided into blocks

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k
n total pages, divided into blocks

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

Goal is to minimize number of blocks fetched/evicted!
[Beckmann
Gibbons
McGuffey
SPAA 21]

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

n total pages, divided into blocks

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

n total pages, divided into blocks

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

n total pages, divided into blocks

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

n total pages, divided into blocks

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

n total pages, divided into blocks

Goal is to minimize number of blocks fetched/evicted!

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

n total pages, divided into blocks

Goal is to minimize number of blocks fetched/evicted!
[Beckmann
Gibbons
McGuffey
SPAA 21]

We give near-optimal algos using [GL. 20]!

Block-Aware Caching [Coester, Naor, L., Talmon SPAA 22]

Cache of size k

n total pages, divided into blocks

Goal is to minimize number of blocks fetched/evicted!
[Beckmann Gibbons
McGuffey SPAA 21]

We give near-optimal algos using [GL. 20]!

Reduction to Online submodular cover!

Take Away I

[Gupta L. SODA 20]

[Coester, Naor, L., Talmon SPAA 22]

Q: What general
classes of optimization problems can we solve online?

Take Away I

[Gupta L. SODA 20]

[Coester, Naor, L., Talmon SPAA 22]

Q: What general
classes of optimization problems can we solve online?

A: Any problem expressible as Submodular Cover!

Outline

Theme I - Submodular Optimization
$f(\because \mid \nu) \geq f(\because \mid \geqslant)$

Theme II - Stable Algorithms

Theme III - Beyond Worst-Case Analysis

Conclusion

Outline

Theme I - Submodular Optimization

Theme II - Stable Algorithms

Theme III - Beyond Worst-Case Analysis

Conclusion

Theme II — Stable Algorithms

Moving to the Dynamic model

Moving to the Dynamic model

New model: inserts AND deletes.

Moving to the Dynamic model

New model: inserts AND deletes.

Moving to the Dynamic model

New model: inserts AND deletes.

Moving to the Dynamic model

New model: inserts AND deletes.

Moving to the Dynamic model

New model: inserts AND deletes.

Moving to the Dynamic model

New model: inserts AND deletes.

Moving to the Dynamic model

New model: inserts AND deletes.

Algorithm now allowed limited \# edits, a.k.a. recourse.

Moving to the Dynamic model

New model: inserts AND deletes.

Algorithm now allowed limited \# edits, a.k.a. recourse.

Moving to the Dynamic model

New model: inserts AND deletes.

Algorithm now allowed limited \# edits, a.k.a. recourse.

Moving to the Dynamic model

New model: inserts AND deletes.

Algorithm now allowed limited \# edits, a.k.a. recourse.

Moving to the Dynamic model

New model: inserts AND deletes.

Algorithm now allowed limited \# edits, a.k.a. recourse.

Moving to the Dynamic model

New model: inserts AND deletes.

Algorithm now allowed limited \# edits, a.k.a. recourse.

Moving to the Dynamic model

New model: inserts AND deletes.

Algorithm now allowed limited \# edits, a.k.a. recourse.

Moving to the Dynamic model

New model: inserts AND deletes.

Algorithm now allowed limited \# edits, a.k.a. recourse.

Moving to the Dynamic model

New model: inserts AND deletes.

Algorithm now allowed limited \# edits, a.k.a. recourse.

Moving to the Dynamic model

New model: inserts AND deletes.

Algorithm now allowed limited \# edits, a.k.a. recourse.

Moving to the Dynamic model

New model: inserts AND deletes.

Algorithm now allowed limited \# edits, a.k.a. recourse.

Q: Can we understand recourse/approximation tradeoffs?

Dynamic Submodular Cover

Theorem [Gupta L. FOCS 20]:
Polynomial time algo for Dynamic Submod Cover with:
(i) approximation $O(\log n)$.
(ii) recourse $\tilde{O}(1)$.

Dynamic Submodular Cover

Theorem [Gupta L. FOCS 20]:
Polynomial time algo for Dynamic Submod Cover with:
(i) approximation $O(\log n)$.
(ii) recourse $\widetilde{O}(1)$.

Dynamic Submodular Cover

Theorem [Gupta L. FOCS 20]:

Polynomial time algo for Dynamic Submod Cover with:
(i) approximation $O(\log n)$.
(ii) recourse $\tilde{O}(1)$.

Technical Ingredient:

Template for converting greedy algos to local search algos, + Tsallis Entropy potential for analysis!

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Comparison

Online

- Inserts Only
- Decisions are irrevocable

Dynamic

- Inserts + Deletes
- Want minimum \# edits, a.k.a. recourse.

Theorem (Dynamic) [Gupta L. FOCS 20]:
(i) Approximation $O(\log n)$.
(ii) Recourse $\tilde{O}(1)$.

Dynamic Submodular Cover [Gupta L. FOCS 20]

Dynamic Set Cover

Dynamic Submodular Cover [Gupta L. FOCS 20]

Dynamic Submodular Cover [Gupta L. FOCS 20]

Modeling power of Submodular Cover + Dynamic.

Is There a Theory to Build?

Is There a Theory to Build?

Most work (mine included!) based on 1-off combinatorial insights.

Is There a Theory to Build?

Most work (mine included!) based on 1-off combinatorial insights.

- Difficult to come up with.

Is There a Theory to Build?

Most work (mine included!) based on 1-off combinatorial insights.

- Difficult to come up with.
- Difficult to generalize.

Is There a Theory to Build?

Most work (mine included!) based on 1-off combinatorial insights.

- Difficult to come up with. 0
- Difficult to generalize.

General recipe for designing stable algorithms?

Is There a Theory to Build?

(Yes)
[Bhattacharya, Buchbinder, L., Saranurak, In submission]

Is There a Theory to Build?

Is There a Theory to Build?

Is There a Theory to Build? (Yes)

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]:

Dynamic Linear Programming with movement $O(\log n) \cdot$ OPT.

Is There a Theory to Build? (Yes)

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]:

Dynamic Linear Programming with movement $O(\log n) \cdot$ OPT.

Is There a Theory to Build? (Yes)

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]:
Dynamic Linear Programming with movement $O(\log n) \cdot$ OPT.

$A_{1} x \geq 1$
$B_{1} x \leq 1$
$x \geq 0$
[Bhattacharya, Buchbinder, L., Saranurak, In submission
$A_{2} x \geq 1$
$B_{2} x \leq 1$
$x \geq 0$

Is There a Theory to Build? (Yes)

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]:
Dynamic Linear Programming with movement $O(\log n) \cdot$ OPT.

$A_{1} x \geq 1$
$B_{1} x \leq 1$
$x \geq 0$
[Bhattacharya, Buchbinder, L.,
$A_{2} x \geq 1$
$B_{2} x \leq 1$
$x \geq 0$

Is There a Theory to Build? (Yes)

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]:
Dynamic Linear Programming with movement $O(\log n) \cdot$ OPT.

$$
\begin{gathered}
A_{3} x \geq 1 \\
B_{3} x \leq 1 \\
x \geq 0
\end{gathered}
$$

$$
\begin{aligned}
A_{2} x & \geq 1 \\
B_{2} x & \leq 1 \\
x & \geq 0
\end{aligned}
$$

Is There a Theory to Build? (Yes)

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]:
Dynamic Linear Programming with movement $O(\log n) \cdot$ OPT.

[Bhattacharya, Buchbinder, L., Saranurak, In submission]

$$
\begin{gathered}
A_{2} x \geq 1 \\
B_{2} x \leq 1 \\
x \geq 0
\end{gathered}
$$

$A_{3} x \geq 1$

$$
B_{3} x \leq 1
$$

$$
x \geq 0
$$

Is There a Theory to Build? (Yes)

[Bhattacharya, Buchbinder, L., Saranurak, In submission]

$$
\begin{gathered}
A_{2} x \geq 1 \\
B_{2} x \leq 1 \\
x \geq 0
\end{gathered}
$$

Is There a Theory to Build? (Yes)

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]:

Dynamic Linear Programming with movement $O(\log n) \cdot$ OPT.
[Bhattacharya, Buchbinder, L.,

$$
\begin{gathered}
A_{2} x \geq 1 \\
B_{2} x \leq 1 \\
x \geq 0
\end{gathered}
$$

Is There a Theory to Build?

 (Yes)
Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]:

Dynamic Linear Programming with movement $O(\log n) \cdot$ OPT.

Rounding gives improved results for Dynamic Set Cover, Load Balancing, Matching, Minimum Spanning Tree.
[Bhattacharya, Buchbinder, L.,

$$
B_{2} x \leq 1
$$

$$
x \geq 0
$$

Is There a Theory to Build?

(Yes)

Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]:

Dynamic Linear Programming with movement $O(\log n) \cdot$ OPT.

Rounding gives improved results for Dynamic Set Cover, Load Balancing, Matching, Minimum Spanning Tree.
[Bhattacharya, Buchbinder, L.,
Saranurak, In submission

$$
A_{2} x \geq 1
$$

$$
B_{2} x \leq 1
$$

$$
x \geq 0
$$

Technical Ingredient: Max Entropy Principle.

Is There a Theory to Build?

 (Yes)
Theorem [Bhattacharya, Buchbinder, L., Saranurak, In submission]:

Dynamic Linear Programming with movement $O(\log n) \cdot$ OPT.

Optimal!

Rounding gives improved results for Dynamic Set Cover, Load Balancing, Matching, Minimum Spanning Tree.
[Bhattacharya, Buchbinder, L., Saranurak, In submission.

$$
A_{2} x \geq 1
$$

$$
B_{2} x \leq 1
$$

$$
x \geq 0
$$

Technical Ingredient: Max Entropy Principle.

Take Away II

Q: Can we understand recourse/approximation tradeoffs?

Take Away II

Q: Can we understand recourse/approximation tradeoffs?

[Gupta L. FOCS 20]

[Bhattacharya, Buchbinder, L., Saranurak, In submission]

A1: Get optimal tradeoff for Submodular Cover class.

Take Away II

Q: Can we understand recourse/approximation tradeoffs?

[Gupta L. FOCS 20]

[Bhattacharya, Buchbinder, L., Saranurak, In submission]

A1: Get optimal tradeoff for Submodular Cover class.

A2: Get stable Dynamic analogs of fundamental algorithmic primitive, Linear Programming.

Outline

Theme I - Submodular Optimization

Theme II - Stable Algorithms

Theme III - Beyond Worst-Case Analysis

Conclusion

Outline

Theme I - Submodular Optimization

Theme II - Stable Algorithms

Theme III - Beyond Worst-Case Analysis

Conclusion

Theme III — Beyond Worst-Case Analysis

Set Cover

Set Cover

Set Cover

Approximation: $O(\log n)$ [Johnson 74], [Lovasz 75], [Chvatal 79]

Set Cover

Approximation: $O(\log n)$ [Johnson 74], [Lovasz 75], [Chvatal 79]

Optimal! (in poly time)

Online Set Cover [Alon Awerbuch Azar Buchbinder Naor 03]

```
s
S2 \bullet
su
S4 \bullet
S5 \bullet
    S6
```


Online Set Cover [Alon Awerbuch Azar Buchbinder Naor 03]

Online Set Cover [Alon Awerbuch Azar Buchbinder Naor 03]

Online Set Cover [Alon Awerbuch Azar Buchbinder Naor 03]

Online Set Cover [Alon Awerbuch Azar Buchbinder Naor 03]

Online Set Cover [Alon Awerbuch Azar Buchbinder Naor 03]

Online Set Cover [Alon Awerbuch Azar Buchbinder Naor 03]

Online Set Cover [Alon Awerbuch Azar Buchbinder Naor 03]

Online Set Cover [Alon Awerbuch Azar Buchbinder Naor 03]

Online Set Cover [Alon Awerbuch Azar Buchbinder Naor 03]

Online Set Cover [Alon Awerbuch Azar Buchbinder Naor 03]

Approximation:
$O\left(\log ^{2} n\right)$
[Alon+ 03]
[Buchbinder
Naor 09]

Online Set Cover [Alon Awerbuch Azar Buchbinder Naor 03]

Approximation:
$O\left(\log ^{2} n\right)$
[Alon+ 03]
[Buchbinder
Naor 09]
Optimal!
(in poly time)

Online Set Cover [Alon Awerbuch Azar Buchbinder Naor 03]

Approximation:
$O\left(\log ^{2} n\right)$
[Alon+ 03]
[Buchbinder
Naor 09]
Optimal!
(in poly time)

Q: What happens beyond the worst case?

Relaxation 1: Random Order (RO)

Relaxation 1: Random Order (RO)

$$
\begin{array}{ll}
s_{1} & \bullet \\
s_{2} & \bullet \\
s_{3} & \bullet \\
s_{4} & \bullet \\
s_{5} & \bullet \\
s_{6} & \bullet
\end{array}
$$

Relaxation 1: Random Order (RO)

$$
\begin{array}{ll}
s_{1} & \bullet \\
s_{2} & \bullet \\
s_{3} & \bullet \\
s_{4} & \bullet \\
s_{5} & \bullet \\
s_{6} & \bullet
\end{array}
$$

Relaxation 1: Random Order (RO)

S_{6}

Relaxation 1: Random Order (RO)

S_{6}

Relaxation 1: Random Order (RO)

Relaxation 2: Random Instance

$$
\begin{array}{ll}
s_{1} & \bullet \\
s_{2} & \bullet \\
s_{3} & \bullet \\
s_{4} & \bullet \\
s_{5} & \bullet \\
s_{6} & \bullet
\end{array}
$$

Relaxation 2: Random Instance

The Landscape

The Landscape

Instance

	Random	Adversarial
		O($\log ^{2} n$) [Alon+ 03] [Buchbinder Naor 09]

The Landscape

Instance

	Random	Adversarial
	$\begin{gathered} \text { O(log(n [support size])) } \\ \text { [Gupta Grandoni Leonardi } \\ \text { Miettinen Sankowski Singh 08] } \end{gathered}$	
		$O\left(\log ^{2} n\right)$ [Alon+ 03] Buchbinder Naor 09]

The Landscape

Instance

The Landscape

Instance

The Landscape

Instance

Was believed $O\left(\log ^{2} n\right)$ best possible [Gupta+ 09]...

The Landscape

Instance

Theorem [Gupta Kehne L. FOCS 21]:

Polynomial time algo for secretary Covering IP with approximation $O(\log n)$.

The Landscape

Instance

Theorem [Gupta Kehne L. FOCS 21]:

Polynomial time algo for secretary Covering IP with approximation $O(\log n)$.

New algorithm, LearnOrCover! Not just new analysis of old algorithm.

The Landscape

Instance

Theorem [Gupta Kehne L. FOCS 21]:

Polynomial time algo for secretary Covering IP with approximation $O(\log n)$.

Theorem [Gupta Kehne L. In submission]:

Polynomial time algo for prophet Covering IPs with approximation $O(\log n)$.

The Landscape

Instance

Theorem [Gupta Kehne L. FOCS 21]:

Polynomial time algo for secretary Covering IP with approximation $O(\log n)$.

Theorem [Gupta Kehne L. In submission]:

Polynomial time algo for prophet Covering IPs with approximation $O(\log n)$.

The Landscape

Instance

Theorem [Gupta Kehne L. FOCS 21]:
 Polynomial time algo for secretary Covering IP with approximation $O(\log n)$.

Theorem [Gupta Kehne L. In submission]:

Polynomial time algo for prophet Covering IPs with approximation $O(\log n)$.

LearnOrCover

LearnOrCover

$$
\begin{aligned}
\mathscr{P} & =\binom{\mathcal{S}}{k} \\
k & :=|O P T|
\end{aligned}
$$

LearnOrCover

@ time t, element \mathcal{v} arrives:

LearnOrCover

@ time t, element v arrives:
If v covered, do nothing.

LearnOrCover

@ time t, element v arrives:
If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v.
(II) "Prune" $P \not \supset v$ from \mathscr{P}.

@ time t, element v arrives:
If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v.
(II) "Prune" $P \not \nexists v$ from \mathscr{P}.

LearnOrCover

Proof idea: progress learning or covering.

@ time t, element v arrives:
If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v. (II) "Prune" $P \not \ngtr v$ from \mathscr{P}.

LearnOrCover

Proof idea: progress learning or covering.
@ time t, element v arrives:
If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v.
(II) "Prune" $P \not \ngtr v$ from \mathscr{P}.

LearnOrCover

Proof idea: progress learning or covering.

$$
\begin{aligned}
\mathscr{P} & =\binom{\mathcal{S}}{k} \\
k & :=|O P T|
\end{aligned}
$$

@ time t, element v arrives:
If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v. (II) "Prune" $P \not \supset v$ from \mathscr{P}.

LearnOrCover

Proof idea: progress learning or covering.

$$
\begin{aligned}
\mathscr{P} & =\binom{\mathcal{S}}{k} \\
k & :=|O P T|
\end{aligned}
$$

@ time t, element v arrives:
If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v. (II) "Prune" $P \not \supset v$ from \mathscr{P}.

LearnOrCover

Proof idea: progress learning or covering.

@ time t, element v arrives:
If v covered, do nothing.

Else:

8
(I) Buy random set R from \mathscr{P} to cover v.
(II) "Prune" $P \not \ngtr v$ from \mathscr{P}.

LearnOrCover

8

If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v. (II) "Prune" $P \not \supset v$ from \mathscr{P}.

LearnOrCover

8

If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v. (II) "Prune" $P \not \supset v$ from \mathscr{P}.

LearnOrCover

Proof idea: progress learning or covering.

@ time t, element v arrives:
If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v. (II) "Prune" $P \not \supset v$ from \mathscr{P}.

LearnOrCover

8

If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v. (II) "Prune" $P \not \nexists v$ from \mathscr{P}.

LearnOrCover

8

If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v. (II) "Prune" $P \not \supset v$ from \mathscr{P}.

LearnOrCover

If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v. (II) "Prune" $P \not \supset v$ from \mathscr{P}.

LearnOrCover

If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v. (II) "Prune" $P \not \supset v$ from \mathscr{P}.

LearnOrCover

If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v. (II) "Prune" $P \not \supset v$ from \mathscr{P}.

LearnOrCover

If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v. (II) "Prune" $P \not \supset v$ from \mathscr{P}.

LearnOrCover

If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v. (II) "Prune" $P \not \supset v$ from \mathscr{P}.

LearnOrCover

@ time t, element v arrives:
If v covered, do nothing.

Else:

(I) Buy random set R from \mathscr{P} to cover v.
(II) "Prune" $P \not \supset v$ from \mathscr{P}.

8
After $O(\log n) \cdot$ OPT steps,

$$
|\mathscr{U}|=0 \text { or }|\mathscr{P}|=1 .
$$

LearnOrCover [GKL. 21] enters the canon

In syllabus of Algorithmic Foundations course @ EPFL

Algorithmic Toolbox --- How to Solve Set Cover in x Ways
Credits
Lecturer
Office hour

Ola Svensson
Office hours Wednesdays 14:00-16:00 in INJ 112
Schedule Mondays 14-16 in INM201.

Short description

The goal of this PhD course is to give PhD students a toolbox of algorithmic techniques in order to successfully address their favorite problems. The course The goal of this P . course is to give PhD students a tooibox of algorithmic techniques in order to successfully address their favorite problems. The course
emphases the illustration of the main ideas of these techniques. We prefer simplicity over details and we illustrate the algorithmic techniques in the simple and clean setting of the set cover problem. The algorithmic techniques that we plan to cover include

- Greedy algorithms
- Local search algorithms
- Linear programming

Randomized rounding (independent, threshold, exponential clocks)

- Duality (primal-dual algorithms, dual fitting, and the use of complementarity slackness)

```
- Multinlivalive weight update
```

```
Online algorithms in adversarial and random order streams primal-dual, potential function, and projection based)
```

In addition, to attenaing the recturs, sturents are required to submit a project report where they apply one of the algorithmic techniques in a more complex setting

Schedule and references

- Lecture 1 (Monday February 27): Introduction. Greedy and Local Search Algorithms. References: Greedy algorithm, Local Search Algorithm (Section 2.1).
- Lecture 2 (Monday March 6): Linear programming, Threshold and Randomized rounding. References: LPs and Threshold Rounding, Independent Randomized Rounding, see also for a Lery nice analysis.
Lecture 3 (Monday March 13): Exponential clocks, TU matrices, VC-dimension. References. Appendix A for exponential clocks. TU matrices and consecutive ones property for VC Lecture 3 (Monday March
- Lecture 4 (Monday March 20): TU matrices, VC-dimension. References: Ola's notes

Take Away III

[Gupta Kehne L. FOCS 21]

[Gupta Kehne L. In Submission]

Q: What
happens
beyond the
worst case?

Take Away III

[Gupta Kehne L. FOCS 21]

[Gupta Kehne L. In Submission]

Q: What
happens
beyond the worst case?

A1: Random order is as easy as offline.

Take Away III

[Gupta Kehne L. FOCS 21]
[Gupta Kehne L. In Submission]

Q: What
happens
beyond the worst case?

A1: Random order is as easy as offline.

A2: Random instance is as easy as offline.

Outline

Theme I - Submodular Optimization

Theme II - Stable Algorithms

Theme III - Beyond Worst-Case Analysis

Conclusion

Outline

Theme I - Submodular Optimization

Theme II - Stable Algorithms

Theme III - Beyond Worst-Case Analysis

Conclusion

Conclusion

My Work

Chasing Positive Bodies
Bhattacharya, Buchbinder,
., Saranurak, In Submission]

Fully-Dynamic Submodular Cover with Bounded Recourse [Gupta, L., FOCS 20]

Set Covering with Our Eyes Wide Shut [Gupta, Kehne, L., In

Submission]
Random Order Set Cover is as Easy as Offline [Gupta, Kehne, L., FOCS 21] [Siegel, Horvitz, L., Divvala,

Farhadi, ECCV 16]
Beyond Sentential Semantic Parsing: Tackling the Math SAT with a Cascade of Tree Transducers
[Hopkins, Petrscu-Prahova, L., Le Bras, Herrasti, Joshi, EMNLP 17]
... and others in AI, ML, Fairness

Robust Subspace Approximation in a Stream [L., Sevekari, Woodruff, NeurIPS 18]

Short/Medium Term Directions

Short/Medium Term Directions

1. Does LearnOrCover idea solve other problems? Do ideas transfer to random order Streaming? Unified theory of random order algorithms?

Short/Medium Term Directions

1. Does LearnOrCover idea solve other problems? Do ideas transfer to random order Streaming? Unified theory of random order algorithms?
2. Other "chaseable" constraint families, beyond mixed packing/covering? Stable clustering problems?

Short/Medium Term Directions

1. Does LearnOrCover idea solve other problems? Do ideas transfer to random order Streaming? Unified theory of random order algorithms?
2. Other "chaseable" constraint families, beyond mixed packing/covering? Stable clustering problems?
(Big demand for this from industry!)

Short/Medium Term Directions

1. Does LearnOrCover idea solve other problems? Do ideas transfer to random order Streaming? Unified theory of random order algorithms?
2. Other "chaseable" constraint families, beyond mixed packing/covering? Stable clustering problems? (Big demand for this from industry!)
3. Do ideas work for update-time Dynamic algorithms?

Long Term Ambitions

Long Term Ambitions

1. Submodularity Under the Hood: can we get better algorithms by exploiting "submodular aspects" of non-submodular problems?

Long Term Ambitions

1. Submodularity Under the Hood: can we get better algorithms by exploiting "submodular aspects" of non-submodular problems?
2. Algorithms meet Data: How can we exploit things we learned yesterday? Beyond Bayesian/Stochastic models?
Non-stationary generative processes?

Long Term Ambitions

1. Submodularity Under the Hood: can we get better algorithms by exploiting "submodular aspects" of non-submodular problems?
2. Algorithms meet Data: How can we exploit things we learned yesterday? Beyond Bayesian/Stochastic models? Non-stationary generative processes?
3. Apply Theory in Practice: Does my work inform useful heuristics? New collaborations on real world applications?

Research Philosophy

Research Philosophy

1. Simplicity: better in practice \& easier to explain.

Research Philosophy

1. Simplicity: better in practice \& easier to explain.
2. Abstraction: gets at deep principle explaining a phenomenon \& automatically yields many applications.

Research Philosophy

1. Simplicity: better in practice \& easier to explain.
2. Abstraction: gets at deep principle explaining a phenomenon \& automatically yields many applications.
3. Practical Impact: stay anchored to needs of real world \& plentiful source of inspiration.

Algorithms \& Uncertainty

Algorithms \& Uncertainty

- Intersection of many beautiful branches of CS \& Math!

Algorithms \& Uncertainty

- Intersection of many beautiful branches of CS \& Math!

- Fun \& approachable on-ramp to research!

Recent/Current Collaborators

- Carnegie Mellon University: Anupam Gupta, Anish Sevekari, David Woodruff
- Harvard: Gregory Kehne
- U Michigan: Thatchaphol Saranurak
- Duke: Debmalya Panigrahi
- Tel Aviv University: Niv Buchbinder, Haim Kaplan, Yaniv Sadeh
- Technion: Seffi Naor, Ohad Talmon, David Naori
- University of Warwick: Sayan Bhattacharya
- London School of Economics: Neil Olver, Franziska Eberle
- University of Bremen: Nicole Megow
- Google Research: Ravi Kumar, Rajesh Jayaram, David Wajc
- Apple: Parikshit Gopalan
- VMWare: Udi Wieder
- Oxford: Christian Coester

Online

The Online Submodular

Finding Skewed Subcubes
Under a Distribution
Gopalan, L., Wieder, ITCS 20
FigureSeer: Parsing ResultFigures in Research Papers [Siegel, Horvitz, L., Divvala, Farhadi, ECCV 16]
Beyond Sentential Semanti
Parsing: Tackling the Math SAT with a Cascade of Tree Transducers
[Hopkins, Petrscu-Prahova, L., Le Bras, Herrasti, Joshi, EMNLP 17

Thanks!

Set Covering with Our
Eyes Wide Shut
Gupta, Kehne, L., In
Submission
Random Order Set Cover is as Easy as Offline
Chasing Positive Bodies
Bhattacharya, Buchbinder
, Saranurak, In Submission

Fully-Dynamic Submodular Cover with Bounded Recourse [Gupta, L., FOCS 20]

Robust Subspace Approximation in a Stream [L., Sevekari, Woodruff, NeurIPS 18]

